A robust and biologically plausible spike pattern recognition network.

نویسندگان

  • Eric Larson
  • Ben P Perrone
  • Kamal Sen
  • Cyrus P Billimoria
چکیده

The neural mechanisms that enable recognition of spiking patterns in the brain are currently unknown. This is especially relevant in sensory systems, in which the brain has to detect such patterns and recognize relevant stimuli by processing peripheral inputs; in particular, it is unclear how sensory systems can recognize time-varying stimuli by processing spiking activity. Because auditory stimuli are represented by time-varying fluctuations in frequency content, it is useful to consider how such stimuli can be recognized by neural processing. Previous models for sound recognition have used preprocessed or low-level auditory signals as input, but complex natural sounds such as speech are thought to be processed in auditory cortex, and brain regions involved in object recognition in general must deal with the natural variability present in spike trains. Thus, we used neural recordings to investigate how a spike pattern recognition system could deal with the intrinsic variability and diverse response properties of cortical spike trains. We propose a biologically plausible computational spike pattern recognition model that uses an excitatory chain of neurons to spatially preserve the temporal representation of the spike pattern. Using a single neural recording as input, the model can be trained using a spike-timing-dependent plasticity-based learning rule to recognize neural responses to 20 different bird songs with >98% accuracy and can be stimulated to evoke reverse spike pattern playback. Although we test spike train recognition performance in an auditory task, this model can be applied to recognize sufficiently reliable spike patterns from any neuronal system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spiking Neural Networks for Cortical Neuronal Spike Train Decoding

Recent investigation of cortical coding and computation indicates that temporal coding is probably a more biologically plausible scheme used by neurons than the rate coding used commonly in most published work. We propose and demonstrate in this letter that spiking neural networks (SNN), consisting of spiking neurons that propagate information by the timing of spikes, are a better alternative t...

متن کامل

Temporal patterns recognized by a network of coordinated time delays and coincidence detectors.

A computational model of a neuronal network is described which performs a fundamental task of general perception: recognition of temporal patterns in continuous and uncued neuronal spike trains. The presented network is able to recognize each pattern element (100 ms interval composed of sets of 10, 20, 30 and 40 ms interspike intervals combined in linear order) as it arrives. Its operation is b...

متن کامل

A Biologically Plausible Computational Model for Auditory Object Recognition. Authors and affiliation

Object recognition is a task of fundamental importance for sensory systems. Although this problem has been intensively investigated in the visual system, relatively little is known about the recognition of complex auditory objects. Recent work has shown that spike trains from individual sensory neurons can be used to discriminate between and recognize stimuli. Multiple groups have developed spi...

متن کامل

A Minimal Spiking Neural Network to Rapidly Train and Classify Handwritten Digits in Binary and 10-Digit Tasks

This paper reports the results of experiments to develop a minimal neural network for pattern classification. The network uses biologically plausible neural and learning mechanisms and is applied to a subset of the MNIST dataset of handwritten digits. The research goal is to assess the classification power of a very simple biologically motivated mechanism. The network architecture is primarily ...

متن کامل

A biologically plausible computational model for auditory object recognition.

Object recognition is a task of fundamental importance for sensory systems. Although this problem has been intensively investigated in the visual system, relatively little is known about the recognition of complex auditory objects. Recent work has shown that spike trains from individual sensory neurons can be used to discriminate between and recognize stimuli. Multiple groups have developed spi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 46  شماره 

صفحات  -

تاریخ انتشار 2010